Objective Building Energy Performance Benchmarking Using Data Envelopment Analysis and Monte Carlo Sampling
نویسنده
چکیده
An objective measure of building energy performance is crucial for performance assessment and rational decision making on energy retrofits and policies of existing buildings. One of the most popular measures of building energy performance benchmarking is Energy Use Intensity (EUI, kwh/m2). While EUI is simple to understand, it only represents the amount of consumed energy per unit floor area rather than the real performance of a building. In other words, it cannot take into account building services such as operation hours, comfortable environment, etc. EUI is often misinterpreted by assuming that a lower EUI for a building implies better energy performance, which may not actually be the case if many of the building services are not considered. In order to overcome this limitation, this paper presents Data Envelopment Analysis (DEA) coupled with Monte Carlo sampling. DEA is a data-driven and non-parametric performance measurement method. DEA can quantify the performance of a given building given multiple inputs and multiple outputs. In this study, two existing office buildings were selected. For energy performance benchmarking, 1000 virtual peer buildings were generated from a Monte Carlo sampling and then simulated using EnergyPlus. Based on a comparison between DEA-based and EUI-based benchmarking, it is shown that DEA is more performance-oriented, objective, and rational since DEA can take into account input (energy used to provide the services used in a building) and output (level of services provided by a building). It is shown that DEA can be an objective building energy benchmarking method, and can be used to identify low energy performance buildings.
منابع مشابه
Dosimetric characterization of a high dose rate 192I source for brachytherapy application using Monte Carlo simulation and benchmarking with thermoluminescent dosimetry
Background: The purpose of this project was to derive the brachytherapy dosimetric functions described by American Association of Physicists in Medicine (AAPM) TG-43 U1 based on high dose rate 192I sources. Materials and Methods: The method utilized included both simulation of the designed Polymethyl methacrylate (PMMA) phantom using the Monte Carlo of MCNP4C and benchmarking of the simulation ...
متن کاملA New Dynamic Random Fuzzy DEA Model to Predict Performance of Decision Making Units
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiency of decision making units (DMUs) which ‎consume the same types of inputs and producing the same types of outputs. Believing that future planning and predicting the ‎efficiency are very important for DMUs, this paper first presents a new dynamic random fuzzy DEA model (DRF-DEA) with ‎common weights (using...
متن کاملUtilizing Monte Carlo Method for Ranking Extreme Efficient Units in Data Envelopment Analysis
Data envelopment analysis (DEA) is a mathematical programming method for calculatingefficiency of decision making units (DMU). In calculating the efficiency score of unitsthrough DEA we may come up with some efficient units. But the question is among theseefficient units which of them is better. As we know, it is possible to rank inefficient unitsthrough efficiency score; however, for ranking e...
متن کاملDesigning a new multi-objective fuzzy stochastic DEA model in a dynamic environment to estimate efficiency of decision making units (Case Study: An Iranian Petroleum Company)
This paper presents a new multi-objective fuzzy stochastic data envelopment analysis model (MOFS-DEA) under mean chance constraints and common weights to estimate the efficiency of decision making units for future financial periods of them. In the initial MOFS-DEA model, the outputs and inputs are characterized by random triangular fuzzy variables with normal distribution, in which ...
متن کاملEvaluation of the electron energy fluence and angular distributions from a clinical accelerator. A BEAMnrc Monte Carlo study
Background: Understanding of the incident electron energy and angular distributions from clinical electron accelerators (linacs) is important for dosimetry and treatment planning. The most important goals of this study were to evaluate the energy fluence and angular distributions of electron beams from a Neptun 10PC linac using the Monte Carlo (MC) code. Materials and Methods: The lina...
متن کامل